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This paper investigates the effect of the EDL at the solid–liquid interface on the liquid flow and heat trans-
fer through a micro-channel formed by two parallel plates. The complete Poisson–Boltzmann equation
(without the frequently used linear approximation) was solved analytically in order to determine the
EDL field near the solid–liquid interface. The momentum equation was solved analytically taking into
consideration the electrical body force resulting from the EDL field and the energy equation was solved
analytically taking viscous dissipation into consideration. Effects of the channel size and the strength of
the zeta-potential on the electrostatic potential, the streaming potential, the velocity profile, the temper-
ature profile, the volume flow rate, the apparent viscosity, the friction factor, and Nusselt number are pre-
sented and discussed. Results of the present analysis, which are based on the complete Poisson–
Boltzmann equation, are compared with a simplified analysis that used a linear approximation of the
Poisson–Boltzmann equation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Micro-fluidic devices are increasingly becoming an attractive
alternative to the conventional flow systems because of their com-
pactness and large surface-to-volume ratio. These micro-scale de-
vices are candidates for applications in heat transfer
augmentation, micro-electronics and micro-electro-mechanical
systems (MEMS), miniaturized chemical reactors and combustors,
aerospace, and biomedical systems. Therefore, it is important to
enhance our understanding of the relevant phenomena associated
with fluid flow and heat transfer in micro-channels.

Due to the small sizes of these micro-channels, some surface
phenomena (such as electrostatic forces and surface roughness)
become significantly important. The present work is concerned
with the effect of the electrostatic force associated with the elec-
tric double layer (EDL) on the fluid-flow and heat-transfer charac-
teristics in micro-channels. Almost all solid surfaces have
electrostatic charges, positive or negative, with different intensi-
ties. The fact that similar charges repel and different charges at-
tract is the reason for the formation of the EDL. Consider a
situation of negatively-charged surfaces bounding a micro-chan-
nel carrying a pressure-driven liquid. The negative charges of
the solid surface attract the positive charges in the liquid, while
repelling the negative charges. As a result, a very-thin layer (an
ll rights reserved.

: +1 204 275 7507.
liman).
order of magnitude of 0.1 nm) is formed adjacent to the walls.
This layer is an immobile (static) layer where the attracted
charges do not move with the bulk fluid motion due to the strong
attraction force between the wall and the charges. Farther away
from the wall, another layer is created where the attraction force
diminishes and the charges move with the bulk of the flow. This
layer is called the diffuse layer and it is much thicker than the
static layer. Both layers are called the EDL. The fluid flow under
the influence of the pressure gradient pushes the charges in the
diffuse layer towards the end of the channel giving rise to an
electrical current called the streaming current. Consequently,
the potential difference between the two ends of the channel
generates an electrical current in the opposite flow direction
known as the induction current. At steady-state conditions, a po-
tential difference, namely the streaming potential, is generated
between the two ends of the channel. The induction current car-
ries charges and molecules in the opposite direction of the flow
creating extra impedance to the flow motion which is called the
electro-viscous effect. In some cases, the electro-viscous effect is
so strong that it causes a reverse flow near the wall. The maxi-
mum strength of the electrostatic charges occurs at the surface
and is called the zeta-potential, n. The strength of the electrostatic
potential, w, declines exponentially as we move away from the
surface. Because of this exponential decline, the effect of the
EDL on the fluid-flow and heat-transfer characteristics is signifi-
cant only for channels with very small hydraulic diameters, and
this effect intensifies as the zeta-potential increases.
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Nomenclature

a half distance between the plates (m)
Ac cross-sectional area of the flow channel (m2)
Br Brinkman number
cp specific heat (J kg�1 K�1)
Dh hydraulic diameter (m)
e electron charge (1:6021� 10�19 C)
Es streaming potential (V)
Ez electric field strength (V m�1)
f friction factor
h convective heat transfer coefficient (W m�2 K�1)
Ic conduction current (A)
Is streaming current (A)
k Debye–Hückel parameter (m�1)
kb Boltzmann constant (1:3805� 10�23 J mol�1 K�1)
kf fluid thermal conductivity (W m�1 K�1)
L channel length (m)
no ionic number concentration, (m�3)
Nu Nusselt number
p pressure (Pa)
Q volume flow rate (m3 s�1)
q00 wall heat flux (W m�2)
Re Reynolds number
T absolute temperature (K)
Tm bulk temperature (K)
Tw wall temperature (K)

mo reference velocity (m s�1)
mz fluid velocity in the z direction (m s�1)
mzm cross-sectional mean fluid velocity (m s�1)
W channel width (m)
x cross-stream coordinate (m)
z stream-wise coordinate (m)
zþm ; z

�
m Valence of the positive and negative ions

Greek symbols
af fluid thermal diffusivity (m2 s�1)
b1 ratio of the total viscous dissipation to the external heat

input
b2 ratio of the local viscous dissipation to the external heat

input
e dimensionless dielectric constant
eo permittivity of vacuum (8:854� 10�12 C m�1 V�1)
h dimensionless temperature
ko electric conductivity (X�1 m�1)
l fluid viscosity (kg m�1 s�1)
la apparent viscosity (kg m�1 s�1)
n zeta-potential (V)
q electric charge density (C m�3)
qf fluid density (kg m�3)
w electrostatic potential (V)
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The existence of the EDL phenomenon has been known for over
a century. Debye and Hückel [1] in 1923 linearized the exponential
Boltzmann ion energy distribution and solved for the distribution
of the electric potential in a solution at low wall potential. Their
analysis, now known as the Debye–Hückel approximation, is valid
only for situations where the zeta-potential is sufficiently low
ðn <� 25 mVÞ. Later, Burgreen and Nakache [2] determined the
w-distribution for electrokinetic flow in parallel-plate micro-chan-
nels at high n. The w-distribution was determined in terms of ellip-
tic integral functions of the first kind. Mala et al. [3] used the
Debye–Hückel approximation and solved analytically for the
velocity distribution, volume flow rate, and friction factor during
fully developed laminar flow in a parallel-plate micro-channel. Li
[4] extended the analysis to the geometry of two-dimensional rect-
angular channels. He determined the w-distribution, velocity dis-
tribution, and volume flow rate from an analytical linear solution
(that used the Debye–Hückel approximation) and a numerical non-
linear solution (that used the complete Poisson–Boltzmann equa-
tion). Li noted large deviations between the two solutions,
particularly in the region close to the channel walls. Chen et al.
[5] investigated the fluid-flow characteristics for developing, pres-
sure-driven, liquid flow in parallel-plate micro-channels. The
mathematical model (Poisson–Boltzmann, Nernst–Planck, continu-
ity and Navier–Stokes equations) was solved numerically by means
of a finite-volume method. For the micro-tubes geometry, Rice and
Whitehead [6] solved for the fully developed, laminar velocity dis-
tribution using the Debye–Hückel approximation and noted that,
near the wall, the negative electrostatic force caused by the migra-
tion of ions can exceed the positive force due to the pressure gra-
dient resulting in a region of back flow near the wall. Levine et al.
[7] extended the work in Ref. [6] to conditions of high zeta-poten-
tials. All studies reported in Refs. [1–7] were concerned only with
the fluid-flow characteristics without including heat transfer.

More recently, the interest in micro-channel heat sinks and
other micro-scale energy systems has motivated studies on the ef-
fect of EDL on the thermal behaviour of micro-channels. Mala et al.
[8] used the Debye–Hückel linearization to solve analytically for
the fully-developed fluid flow in parallel-plate micro-channels.
The temperature distribution and Nusselt number for developing
heat transfer with uniform wall temperature were obtained by
solving the energy equation numerically. The results in Ref. [8]
are valid only for conditions of low n. A semi-analytical solution
was obtained by Yang et al. [9] for steady-state, fully developed,
laminar liquid flow and heat transfer in micro-channels with a
rectangular cross-section. The solution corresponded to aqueous
solutions of low ionic concentration and a solid surface of high
zeta-potential, and the results of the fluid-flow and heat-transfer
characteristics indicated strong affects by the EDL. Soong and
Wang [10] used the Debye–Hückel linearization and solved analyt-
ically for the velocity and temperature distributions under hydro-
dynamically and thermally fully developed flow conditions in a
parallel-plate micro-channel with asymmetrical wall-potential
and wall-heat-flux conditions. Viscous dissipation was not in-
cluded in the analysis. Again, these results are expected to be valid
only at low n. The strong influence of viscous dissipation on the
temperature field in micro-channel flows in the absence of electro-
static effects was addressed by Kleinstreuer [11]. It was found that
viscous dissipation increases rapidly with a decrease in channel
size and that viscous dissipation should be taken into consider-
ation for liquid flow in channels with hydraulic diameters less than
50 lm. Analytical expressions for the temperature distribution and
Nusselt number were obtained by Horiuchi and Dutta [12] for the
condition of high zeta-potential in parallel-plate micro-channel
flow with uniform wall temperature and uniform wall heat flux.
However, these solutions corresponded to the assumption of uni-
form (plug-like) flow velocity. Chakraborty [13] used the Debye–
Hückel linearization and solved analytically for the velocity and
temperature distributions under hydrodynamically and thermally
fully developed flow conditions in a micro-tube with a constant
wall heat flux. Viscous dissipation was not included in the analysis
and, due to the utilization of the Debye–Hückel linearization, the
results are expected to be valid only at low n. A numerical solution
of the steady, laminar, fully-developed flow (hydrodynamically
and thermally) of liquids in a parallel-plate micro-channel was re-
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cently proposed by Ngoma and Erchiqui [14] using a slip boundary
condition at the walls. The Debye–Hückel linearization was
adopted and viscous dissipation was not included.

The objective of the present investigation was to generate ana-
lytical solutions for the velocity and temperature distributions dur-
ing steady, laminar, fully-developed flow (hydrodynamically and
thermally) of liquids in parallel-plate micro-channels using the full
Poisson–Boltzmann equation and taking the viscous dissipation
into consideration. Therefore, the present analysis is expected to
be valid for practical situations of high zeta-potentials. A simplified
solution that uses the Debye–Hückel approximation was also
developed in order to facilitate a quantitative assessment of the ef-
fects of this approximation on the fluid-flow and heat-transfer
characteristics.

2. Mathematical formulation

The geometry under consideration is shown schematically in
Fig. 1, whereby a micro-channel is formed between two parallel
plates separated by a distance 2a. An incompressible Newtonian
aqueous 1:1 electrolyte of uniform dielectric constant e flows in
the micro-channel under the influences of an imposed pressure
gradient dp=dz and a uniform zeta-potential n at both walls. Heat
transfer takes place between the walls and the fluid due to a uni-
form input heat flux q00 imposed at both walls. Solutions for the
fluid-flow and heat-transfer characteristics were obtained based
on two analyses; a simplified analysis using the Debye–Hückel
approximation (see Appendix A) and the more general analysis
applicable to high n (presented next). The general analysis was
conducted under the following assumptions:

(1) The fluid is incompressible and Newtonian with constant
thermophysical properties.

(2) The flow is considered to be steady, laminar, and fully devel-
oped, both hydrodynamically and thermally.
Fig. 1. Geometry and coordinate system.
(3) The channel width ðWÞ is much larger than channel height
ð2aÞ, therefore, the flow is considered to be one-dimensional.

(4) Non-slip conditions apply at both walls.

2.1. Electrostatic potential field

The electrostatic potential field (w) in the fluid region is gov-
erned by the Poisson–Boltzmann equation, which can be written
as [3,5]:

d2w

dx2 ¼
2nozme
eeo

sinh
zmew
kbT

� �
: ð1Þ

The parameters no; zm; e; eo; kb, and T are the bulk concen-
tration of ions, valence of ions, electron charge, permittivity of
vacuum, Boltzmann constant, and absolute temperature, respec-
tively. Introducing the following dimensionless parameters:

�w ¼ zvew
kbT

; �x ¼ x
a
; and k ¼ 2noz2

me2

eeokbT

� �1
2

; ð2Þ

the dimensionless form of the Poisson–Boltzmann equation can be
expressed as

d2 �w
d�x2 ¼ ðkaÞ2 sinhð�wÞ: ð3Þ

The parameter k is the Debye–Hückel parameter and ð1=kÞ is
normally referred to as the characteristic thickness of the EDL.
Eq. (3) is subject to the following the boundary conditions:

d�w
d�x
¼ 0 at �x ¼ 0;

and �w ¼ �n at �x ¼ 1;
ð4Þ

where, �n ¼ zv en
kbT .

Integrating Eq. (3) and applying the boundary condition at the
center of the channel, we get

d�w
d�x
¼

ffiffiffi
2
p
ðkaÞ½coshð�wÞ � coshð�woÞ�1=2

; ð5Þ

where �wo is the dimensionless electrostatic potential at the center of
the channel. Assuming that the half-thickness of the channel is
greater than the EDL thickness (i.e., ka > 1), we may set the param-
eter �wo in Eq. (5) to zero in order to facilitate the integration [12,15].
The lowest value of ka used in the present analysis is 5.5. Integrat-
ing Eq. (5), applying the boundary condition at the channel wall,
and rearranging, we get

�w ¼ 4tanh�1 tanh
�n
4

� �
e�kað1��xÞ

� �
: ð6Þ

The predicted �w� �x field from Eq. (6) as a function of (ka) and �n
will be compared with a numerical solution of Eq. (3) in order to
confirm its validity.

2.2. Velocity field

For steady, laminar, one-dimensional flow between parallel
plates, the momentum equation (including the effect of EDL) has
the following form:

ld2mz

dx2 �
dp
dz
þ Ezq ¼ 0; ð7Þ

where q is the charge density and it is defined as

q ¼ �2ðnozmeÞ sinh
zmew
kbT

� �
; ð8Þ
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and Ez is the electric field strength. The product Ezq in Eq. (7) rep-
resents an electric body force and its effect appears to be the oppo-
site of that of the pressure gradient. Utilizing the following
dimensionless parameters:

G1 ¼
nokbT

L � dp
dz

� � ; �mz ¼
mz

mo
; and Es ¼

LEz

n
; ð9Þ

where vo is a reference velocity given by mo ¼ 1
l �

dp
dz

� �
a2. Substitut-

ing from Eq. (3), the momentum equation reduces to

d2�mz

d�x2 �
2G1

�nEs

ðkaÞ2
d2 �w
d�x2 þ 1 ¼ 0: ð10Þ

Eq. (10) is subject to the following boundary conditions:

d�w
d�x
¼ d�mz

d�x
¼ 0 at �x ¼ 0; and

�w ¼ �n and �mz ¼ 0 at �x ¼ 1:
ð11Þ

Integrating Eq. (10) twice and imposing boundary conditions
(11), the following velocity field was obtained:

�mz ¼
1
2
ð1� �x2Þ � 2G1

�n2Es

ðkaÞ2
1�

�w
�n

� �
; ð12Þ

where the electrostatic potential �w is given by Eq. (6). The first term
on the right-hand side of Eq. (12) corresponds to the velocity com-
ponent induced by the pressure gradient and the second term cor-
responds to the retardation due to the EDL. In order to calculate the
velocity from Eq. (12), the streaming potential Es must be
determined.

2.3. Streaming potential

The streaming current that is generated due to the transport of
charges by the liquid flow can be calculated from the following
integral:

Is ¼
Z

Ac

mzqdAc: ð13Þ

Introducing the dimensionless parameters

�q ¼ q
nozme

¼ �2 sinhð�wÞ and Is ¼
Is

2monozmea
; ð14Þ

the streaming current equation can be written in the following
dimensionless form:

Is ¼ �2
Z 1

0

�mz sinhð�wÞdð�xÞ: ð15Þ

Substituting from Eqs. (6) and (12) and performing the integra-
tion, the dimensionless steaming current can be written as

Is ¼ ðI1 � I3Þ �
4G1

�nEs

ðkaÞ2

 !
ðI2 � I3Þ; ð16Þ

where,

I1 ¼
4

ðkaÞ3
�ka ln

1þ geka

1� geka

� �
þ geka

ðgekaÞ2 � 1

" #(

þ½Li2ðgekaÞ � Li2ð�gekaÞ� � ½Li2ðgÞ � Li2ð�gÞ�
	
; ð17aÞ

I2 ¼
8
ka

1� 2gekatanh�1ðgekaÞ
ðgekaÞ2 � 1

� 1� 2gtanh�1ðgÞ
g2 � 1

" #
; ð17bÞ

I3 ¼ �
4
ka

geka

ðgekaÞ2 � 1
� g

g2 � 1

" #
; ð17cÞ

g ¼ tanhð�n=4Þe�ka; ð17dÞ
and Li2ðbÞ is the Poly-Logarithmic function of second order defined
by

Li2ðbÞ ¼ �
Z b

0

Inð1� tÞ
t

dt: ð17eÞ

An equilibrium state occurs when the streaming current is
equal to the conduction current, i.e.,

Ic þ Is ¼ 0; ð18Þ

which can be written in the following dimensionless form:

Ic þ
G2ðkaÞ2

�n
Is ¼ 0; ð19Þ

where G2 ¼
Leeo �dp

dzð Þ
2lko

and the dimensionless conduction current is

Ic ¼ EsAc

L
. Substituting Eq. (16) into Eq. (19) and rearranging, we get

Es ¼
G2ðkaÞ2

�n
ðI3 � I1Þ

1� 4G1G2ðI2 � �nI3Þ
: ð20Þ
2.4. Temperature field

The energy equation for steady-state, laminar, and
fully-developed (hydrodynamically and thermally) flow is given by

mz
@T
@z
¼ af

@2T
@x2 þ

Pr
cp

dmz

dx

� �2
( )

; ð21Þ

where af ; cp, and Pr are the thermal diffusivity, specific heat, and
Prandtl number, respectively. The last term in Eq. (21) accounts
for the effects of viscous dissipation. Assuming the boundary condi-
tion of uniform input heat flux ðq00Þ at both walls of the channel
boundary, and performing an overall energy balance, we get

@T
@z
¼ dTw

dz
¼ dTm

dz
¼ q00

qf mzmcpa
þ l

qf mzmcpa

Z a

0

dmz

dx

� �2

dx; ð22Þ

where vzm is the mean axial velocity in the flow direction. Substitut-
ing the value of the axial temperature gradient from Eq. (22) into
Eq. (21) and using these dimensionless parameters,

h ¼ Tw � T
ðq00a=kÞ ; and Br ¼ lða2ð�dp=dzÞ=lÞ2

aq00
ð23Þ

the energy equation can be written as

d2h
d�x2 þ

�mz

�mzm

� �
1þ Br

Z 1

0

d�mz

d�x

� �2

d�x

" #
¼ Br

d�mz

d�x

� �2

; ð24Þ

where Br is a modified Brinkman number. Eq. (24), together with
Eq. (12) for the velocity profile, indicate that the temperature profile
is a function of �n, (ka), and Br. The boundary conditions for Eq. (24)
are: h ¼ 0 at �x ¼ 1 and dh=d�x ¼ 0 at �x ¼ 0. Defining the parameter
J ¼

R 1
0 ðd�mz=d�xÞ2d�x, the solution of the energy equation has the form

h ¼ Br½Eh � ð�x� 1ÞAh � Ch� �
1þ BrJ

�mzm
½Fh � ð�x� 1ÞBh � Dh�; ð25Þ

where

J¼1
3
�8G1

�nEs

ðkaÞ2
ln

1þgeka

1�geka

� �
� 1

ka
Li2ðgekaÞ�Li2ð�gekaÞ

 	

� Li2ðgÞ�Li2ð�gÞf g
� �� �

þ32ðG1
�nÞ2E2

s

ðkaÞ3
1

1�ðgekaÞ2
� 1

1�g2

" #
; ð26Þ

Ah ¼
8G1

�nEs

ðkaÞ3
½Li2ðgÞ�Li2ð�gÞ�þ32ðG1

�nÞ2E2
s

ðkaÞ3
1

1�g2
; ð27Þ

Bh ¼
4G1

�nEs

ðkaÞ3
½Li2ðgÞ�Li2ð�gÞ�; ð28Þ
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Ch ¼
1

12
�8G1

�nEs

ðkaÞ4
ka Li2ðgekaÞ�Li2ð�gekaÞ

 	

�2 Li3ðgekaÞ�Li3ð�gekaÞ

 	� �

þ16ðG1
�nÞ2E2

s

ðkaÞ4
ln

ðgekaÞ2

1�ðgekaÞ2

" #
; ð29Þ

Dh ¼
5

24
�G1

�n2Es

ðkaÞ2
þ4G1

�nEs

ðkaÞ4
½Li3ðgekaÞ�Li3ð�gekaÞ�; ð30Þ

Eh ¼
�x4

12
�8G1

�nEs

ðkaÞ4
ka�x Li2ðgeka�xÞ�Li2ð�geka�xÞ

 	

�2 Li3ðgeka�xÞ�Li3ð�geka�xÞ

 	� �

þ16ðG1
�nÞ2E2

s

ðkaÞ4
ln

ðgeka�xÞ2

1�ðgeka�xÞ2

" #
; ð31Þ

and

Fh ¼ �
�x4

24
þ

�x2

4
� G1

�n2Es�x2

ðkaÞ2
þ 4G1

�nEs

ðkaÞ4
½Li3ðgeka�xÞ � Li3ð�geka�xÞ�: ð32Þ
2.5. Apparent viscosity

The volume flow rate can be calculated from the relation

Q ¼ 2W
Z a

0
mzdx ¼ 2Wamzm: ð33Þ

In dimensionless form, Eq. (33) can be written as

Q ¼ Q
2aWmo

¼ �mzm; ð34Þ

where the mean axial velocity is given by

�mzm ¼
Z 1

0

�mzd�x ¼ 1
3
þ 4G1

�nEs

ðkaÞ3
ðkaÞ�n

2
þ fLi2ðgekaÞ � Li2ð�gekaÞg

�

�fLi2ðgÞ � Li2ð�gÞg
�
: ð35Þ

For Poiseulle flow between two parallel plates without the EDL
effect, the volumetric flow rate is expressed as

Q ¼ 2ð�dp=dzÞa3W
3la

; ð36Þ

where la stands for the apparent viscosity. Eq. (36) can be written
as

Q ¼ l
3la

: ð37Þ

Comparing Eqs. (34) and (37), we get after rearranging

la

l
¼ 1

3�mzm
¼ 1

3Q
: ð38Þ
2.6. Friction factor

The friction factor is normally defined as

f ¼ 2að�dp=dxÞ
qf m2

zm
; ð39Þ

and Reynolds number is given by

Re ¼ 4aqf mzm=l: ð40Þ

Combining Eqs. (39) and (40), and using the definition of G1 gi-
ven by Eq. (9), we get

f Re ¼ 8
�mzm
¼ 8

Q
ð41Þ

where �mzm is given by Eq. (35). Since la=l and f Re are directly pro-
portional to Q , as given by Eqs. (38) and (41), respectively, only the
results of Q will be presented later.
2.7. Nusselt number

The formulation for the bulk temperature can be written as

Tm ¼
2W

R a
0 Tcpqf mzdx
qf Qcp

¼
R a

0 Tmzdx
amzm

¼
R 1

0 T�mzd�x
�mzm

: ð42Þ

Introducing the definition of h from Eq. (23) into Eq. (42), we get

hm ¼
Z 1

0
h

�mz

�mzm

� �
d�x: ð43Þ

Substituting Eq. (25) in Eq. (43) and rearranging, the dimension-
less bulk temperature can be expressed as

hm ¼
Br
R 1

0 Gmhd�x� 1þBrJ
�mzm

R 1
0 Hmhd�x

�mzm
; ð44Þ

where

Gmh ¼ �mz½Eh � ð�x� 1ÞAh � Ch�; ð45Þ

and

Hmh ¼ �mz½Fh � ð�x� 1ÞBh � Dh� ð46Þ

Using the definitions of the convective heat transfer coefficient,
h ¼ q00=ðTw � TmÞ, and the hydraulic diameter, Dh ¼ 4(area)/wett-
edc perimeter = 4a, Nusselt number can be written as

Nu ¼ hDh

kf
¼ 4aq00

kf ðTw � TmÞ
¼ 4

hm
ð47Þ

Substituting Eq. (44) in Eq. (47), the following formulation was ob-
tained for Nusselt number

Nu ¼ 4�mzm

Br
R 1

0 Gmhd�xþ 1þBrJ
�mzm

R 1
0 Hmhd�x

: ð48Þ

Analytical (closed form) expressions were obtained for the two
integrals in Eq. (48). However, these expressions are quite cumber-
some and therefore, will not be reproduced here. The value of Nu
from the above formulation is dependent on �n, (ka), and Br.

For the special case of pure Poiseulle flow (Br = 0 and �n ¼ 0), Eq.
(12) reduces to �mz ¼ ð1� �x2Þ=2, Eq. (35) reduces to �mzm ¼ 1=3, Eq.

(25) reduces to h ¼ 3 �x4

24�
�x2

4 þ 5
24

h i
, and Eq. (43) reduces to

hm ¼ 17=35. Substituting this value of hm into Eq. (47), we get the
well-known value of Nusselt number for pure Poiseulle flow,
Nu = 140/17 = 8.235.
3. Results and discussion

All the results presented in this paper correspond to an infi-
nitely diluted aqueous 1:1 electrolyte solution (no ¼ 6:022�
1020 m�3Þ at T ¼ 298 K ðe ¼ 80; ko ¼ 1:264� 10�7 X�1 m�1, and
l ¼ 0:9� 10�3 N s m�2Þ. A fixed pressure gradient was used,
ð�dp=dzÞ ¼ 3� 107 Pa m�1, while different values of a and n were
utilized in generating the results.

The zeta-potential is the electric potential at the shear plane
separating the thin immobile fluid layer bound to the solid surface
from the rest of the liquid. This potential is not measurable directly
but it can be calculated using theoretical models and experimen-
tally determined electrophoretic mobility. Beside the surface
charge density, the electrophoretic mobility depends on a number
of factors, such as the pH of the liquid, the electrolyte concentra-
tion (ionic strength), dielectric permittivity of the medium, viscos-
ity, and temperature. Deshiikan and Papadopoulos [16] used the
modified Booth equation to calculate the zeta-potential from
known experimental values of the electrophoretic mobility and
reported n-values as high as 244.1 mv in magnitude. This



Fig. 4. Effect of (ka) on �w at �n ¼ 10.
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zeta-potential corresponds to �n ¼ 9:51 and therefore, the present
results will be limited to the range 0 6 �n 6 10.

Fig. 2 shows a comparison between three solutions of �w-distri-
bution corresponding to n ¼ 240 mv ð�n ¼ 9:35Þ and a ¼ 1:7 lm
ðka ¼ 5:54Þ. The three solutions correspond to the full model
given by Eq. (6), the simplified model given by Eq. (A.2) and an
accurate numerical solution of Eq. (3) together with boundary
conditions (4). The close agreement between the full model and
the numerical solution indicates that Eq. (6) produces accurate
values of �w throughout the channel at high zeta-potentials, thus
confirming that the assumption of �wo ¼ 0 in Eq. (5) does not have
a strong influence on the �w-distribution. On the other hand, the
simplified model corresponding to the Debye–Hückel approxima-
tion deviates significantly from the other two sets of results. The
two parameters influencing the value of �w are �n and (ka) and the
influences of these two parameters are shown in Figs. 3 and 4,
respectively. Both the simplified and the full model predict that
�w increases with an increase in �n or a decrease in (ka); however,
the simplified model overestimates the value of �w in all cases. Sig-
nificant deviations can be seen between the two models at higher
values of �n. It is clear from Figs. 3 and 4 that �n is the key parameter
in determining the magnitude of the deviation between the two
models and that even for a narrow channel with ka = 5.5, the devi-
ation can be small if �n is small (e.g., �n ¼ 2). The present result
showing the simplified model over-predicting w at high n is consis-
tent with previous results [4].

Variation of the streaming potential, Es, with �n and (ka) is shown
in Fig. 5. Both the simplified and the full models predict that Es de-
creases as �n increases or (ka) decreases. An increase in n results in
Fig. 2. Validation of Eq. (6) for �w.

Fig. 3. Effect of �n on �w at ka = 5.5.

Fig. 5. Variation of Es with �n and (ka).
more ions being attracted in the double layer and less ions carried
downstream by the flowing fluid and thus a lower Es. Also, a de-
crease in (ka) decreases the volume between the plates resulting
in less ions carried downstream and consequently a lower Es.
Fig. 5 indicates that the simplified solution overestimates the value
of Es in all cases, consistent with the overestimation of �w shown
earlier. The deviation between the two solutions increases as �n
increases.

The velocity distributions predicted by both the simplified and
the full models for the range 0 6 �n 6 10 are shown in Fig. 6 for
ka = 5.5 and in Fig. 7 for ka = 40.7. The profile marked �n ¼ 0 repre-
sents the velocity component induced by the pressure gradient
without EDL retardation. For a very narrow channel (ka = 5.5), as
Fig. 6. Velocity profiles for ka = 5.5 and various �n.



Fig. 7. Velocity profiles for ka = 40.7 and various �n.

Fig. 9. Temperature profiles for ka = 5.5 and Br = 1.
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�n increases, Fig. 6 shows that the full model predicts significant
retardation of the flow velocity throughout the cross-section and
a region of reversed flow near the wall up to �n ¼ 2. The deviation
between the full and the simplified model is insignificant at
�n ¼ 0:5 and small at �n ¼ 2. Surprisingly, the magnitude of velocity
retardation in the core region of the flow decreases as �n increases
from 2 to 10, while increased velocity retardation continues near
the wall. As well, the near-wall zone (where increasing retardation
continues) shrinks in size as �n increases. This result is consistent
with the near exponential decrease of Es with �n, shown earlier in
Fig. 5. It is important to note that the simplified model predicted
an opposite trend in terms of the effect of �n on the velocity retar-
dation over the range 2 6 �n 6 10. For larger channels (ka = 40.7),
Fig. 7 shows that the velocity retardation is much less significant
(percentage-wise) for all values of �n. These results are consistent
with those of Burgreen and Nakache [2] who reported that the
retarding flow is less than 10% of the pressure-induced flow for
ka > 20, while for ka = 1.6, the retarding flow component can be
as much as 68% of pressure-induced flow at �n ¼ 4. The results in
Ref. [4] also indicate that for ka > 1, the magnitude of the retarding
component decreased as �n increased from 4 to 10.

Predictions of the dimensionless volume flow rate, �Q , are shown
in Fig. 8. The full solution predicts that �Q decreases with �n due to
velocity retardation down to a minimum value at about �n ¼ 2:14
for ka = 5.5 and about �n ¼ 3:31 for ka = 40.7, and then increases
with �n. The reduction in volume flow rate due to EDL is more sig-
nificant for low values of ka; the maximum reduction is about 63%
for ka = 5.5 and only about 9.6% for ka = 40.7. The trends in these
results are consistent with the velocity results presented earlier.
Variation of la=l with �n and (ka) can be deduced from the results
in Fig. 8 using Eq. (38). The trend of variation in la=l is opposite to
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Fig. 8. Variation of �Q with �n and (ka).
that of �Q in the sense that an increase in �Q causes a decrease in
la=l and vice versa. The behavior predicted by the full model of
increasing la=l with �n up to a maximum and then decreasing is
consistent with the predictions of Levine et al. [7] for micro-tubes.
As well, values of f Re and the trend of its dependence on �n and (ka)
can be obtained from Fig. 8 together with Eq. (41).

Results of the temperature distribution for ka = 5.5, Br = 1, and
0 6 �n 6 10 are shown in Fig. 9. In all cases, h increases from zero
at �x ¼ 1 to a maximum at �x ¼ 0. The results in Fig. 9 are shown over
the range 0 6 �x 6 0:4 in order to magnify the core region of the
channel. In the core region of the channel, the variation of h with
�n appears to have an irregular trend. Starting from �n ¼ 0, the full
model predicts a decrease in h as �n increases to 0.5, then h increases
as �n increases to 4, and then h decreases as �n increases to 10. The
simplified model shows h decreasing as �n increases to 0.5 (similar
to the full model), while �n ¼ 4 and 10 result in continuously
increasing h. The deviation between the two models is very small
at �n ¼ 0:5, but becomes successively larger as �n increases.

In order to explain the trends in Fig. 9, a closer examination was
made of energy Eq. (24). According to Eq. (24), h is dependent on
the velocity distribution (which is affected by the EDL), and the vis-
cous dissipation. Generally speaking, h is expected to increase with
a decrease in the velocity and/or an increase in viscous dissipation.
Two terms in Eq. (24) that relate to viscous dissipation are
b1 ¼ Br

R 1
0 ðd�mz=d�xÞ2d�x and b2 ¼ Brðd�mz=d�xÞ2, where b1 is the ratio

of the total viscous dissipation within the cross-section to the
external heat input, and b2 is the ratio of the local viscous dissipa-
tion to the external heat input. It is the combined effects of b1; b2,
and vz that determine the behavior of h. The variation of b1 and b2

with �n at ka = 5.5 and Br = 1 is shown in Figs. 10 and 11, respec-
Fig. 10. Variation of b1 with �n at ka = 5.5 and Br = 1.



Fig. 13. Variation of Nu with (ka) and �n for Br = 1.
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tively, and the variation of the vz-profile with �n at ka = 5.5 is shown
in Fig. 6. It can be seen from Figs. 10 and 11 that both b1 and b2

drop significantly, indicating a decrease in viscous dissipation
(which causes a decrease in h), as �n increases from zero to 0.5.
On the other hand, Fig. 6 shows that vz decreases (which causes
an increase in h) as �n increases from zero to 0.5. The net effect in
this case is a decrease in h, as seen in Fig. 9. Going from �n ¼ 0:5
to �n ¼ 4, b1; b2, and vz continued to decrease; however, the net ef-
fect in this case is an increase in h. Between �n ¼ 4 and �n ¼ 10, b1; b2,
and vz increased and the net effect is a decrease in h. It must be
pointed out that the variations in the magnitude of h discussed
above are small. As well, the accuracy of the results in Fig. 9 was
confirmed by an independent numerical solution of the momen-
tum Eq. (10), and energy Eq. (24) that produced very close agree-
ment. The effect of Br on h is shown in Fig. 12 for ka = 5.5 and
�n ¼ 10. The viscous dissipation increases as Br increases and
Fig. 12 shows that h increases monotonically with Br. A large devi-
ation can be seen between the two models at Br = 10.

The variation of Nusselt number with �n at Br = 1 is shown in
Fig. 13 for various values of ka. In all cases, Nu = 7 at �n ¼ 0, and
as �n increases (with the full model), Nu first increases slightly, then
drops to a minimum before rising again. These trends are fully con-
sistent with Eq. (47) and the results in Fig. 9. The simplified model
predicts the initial increase in Nu at low �n; however, Nu decreases
continuously with further increase in �n. The deviation between the
two models is insignificant for �n 6 2, but increases as �n increases.
Fig. 14 shows the effect of Br on Nu at �n ¼ 10 for various channel
widths. For Br < 0.1, the effect of viscous dissipation is insignificant
and Nu plateaus at a constant value for all channel widths. For
Fig. 11. b2-profiles for various values of �n with ka = 5.5 and Br = 1.

Fig. 12. Effect of Br on the temperature profile for �n ¼ 10 and ka = 5.5.

Fig. 14. Effect of Br on Nu at �n ¼ 10 for various (ka).
Br > 0.1, h increases with Br resulting in a decrease in Nu. The
two models predict the same trend; however, Fig. 14 shows that
the deviation between the two models becomes more significant
as ka decreases.

4. Conclusion

An analytical solution was developed for steady, laminar,
fully-developed liquid flow and heat transfer in a micro-channel
formed by two parallel plates under the influences of an electric
double layer (EDL) and viscous dissipation. The solution was based
on the full Poisson–Boltzmann equation and the results include the
distribution of the electrostatic potential, w, the streaming poten-
tial, Es, the velocity distribution, the temperature distribution, the
volumetric flow rate, the apparent viscosity, the friction factor,
and Nusselt number. Comparisons were made between the predic-
tions from the present (full) model and those from a simplified
model based on the linearized Debye–Hückel approximation. The
following conclusions can be drawn from the present results:

1. Both the simplified and the full models predict that �w increases
with an increase in �n or a decrease in (ka); however, the simpli-
fied model overestimates the value of �w in all cases. The devia-
tions between the two models increase as �n increases.

2. Both the simplified and the full models predict that Es decreases
as �n increases or (ka) decreases. The simplified solution overes-
timates the value of �Es in all cases, consistent with the overes-
timation of �w, and the deviation between the two solutions
increases as �n increases.
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3. The full model predicts that the magnitude of velocity retarda-
tion increases as �n increases up to �n ¼ 2:14 (for ka = 5.5) and
�n ¼ 3:31 (for ka = 40.7), beyond which the velocity retardation
decreases with a further increase in �n. On the other hand, the
simplified model predicts that the velocity retardation increases
continuously with �n.

4. The full model predicts that the volumetric flow rate decreases
as �n increases down to a minimum at �n ¼ 2:14 (for ka = 5.5) and
�n ¼ 3:31 (for ka = 40.7), beyond which the volumetric flow rate
increases with a further increase in �n. On the other hand, the
simplified model predicts that the volumetric flow rate
decreases continuously as �n increases. The trends of the behav-
iours of the apparent viscosity and the friction factor follow
from the trend of the volumetric flow rate.

5. The EDL and the viscous dissipation affect the temperature pro-
file in a complicated manner. The full model and the simplified
model predict different trends, and the deviation between the
two models increases with �n.

6. At Br = 1 and for all values of ka, the full model predicts that
Nusselt number initially increases with �n, then decreases to a
minimum with a further increase in �n, and then increases again
with �n. The variation of Nu with Br is monotonic, with Nu
decreasing as Br increases. The predictions from the full and
the simplified models are in good agreement up to �n ¼ 2,
beyond which, the two models deviate in magnitude and trend.
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Appendix A. Simplified solution

The simplified solution presented in this appendix corresponds
to the same geometry, flow conditions, and boundary conditions as
the full model presented above, except that the Debye–Hückel
approximation is adopted in the simplified model. The hydrody-
namics part of this problem has been solved in previous investiga-
tions (e.g., [3,8]); however, the thermal aspects presented here
(temperature distribution and Nusselt number) are new.

Invoking the Debye–Hückel approximation, the Poisson–Boltz-
mann equation reduces to

d2 �w
d�x2 ¼ ðkaÞ2 �w: ðA:1Þ

The solution of Eq. (A.1), subject to the boundary conditions:
�w ¼ 0 at �x ¼ 0 and �w ¼ �n at �x ¼ 1, can be found in many references
(e.g., [3,8]) as

�w ¼
�n sinhðka�xÞ

sinhðkaÞ : ðA:2Þ

Using solution Eq. (A.2), momentum Eq. (10) can be solved, sub-
ject to boundary conditions (11), resulting in the following velocity
profile [8]:

mz ¼
1
2
ð1� �x2Þ � 2EsG1

�n2

ðkaÞ2
1� sinhðka�xÞ

sinhðkaÞ

� �
: ðA:3Þ

Using the Debye–Hückel linearization, the streaming current
integral in Eq. (15) simplifies to

Is ¼ �2
Z 1

0

�mz
�wd�x; ðA:4Þ

and an expression can be obtained for the streaming current as [8],
Is ¼ �2a
1
2
ðI4 � I5Þ �

2EsG1
�n2

ðkaÞ2
I6 þ

2EsG1
�n2

ðkaÞ2 sinhðkaÞ
I7

" #
; ðA:5Þ

where G1 is defined in Eq. (9), and

I4 ¼ I6 ¼
coshðkaÞ � 1

ka
; ðA:6Þ

I5 ¼
1
ka
þ 2

ðkaÞ3

" #
coshðkaÞ � 2

ðkaÞ2
sinhðkaÞ � 2

ðkaÞ3
; ðA:7Þ

I7 ¼
1
2

1
ka

sinhðkaÞ coshðkaÞ � 1
� �

; ðA:8Þ

and

a ¼ �n= sinhðkaÞ: ðA:9Þ

Substituting Eq. (A.5) in Eq. (19) and using the same definitions
for G2 and the conduction current Ic , the streaming potential can be
written as [8]

Es ¼
a G2ðkaÞ2

�n
ðI4 � I5Þ

1þ 4aG1G2
�n I6 � I7

sinhðkaÞ

� � : ðA:10Þ

The mean velocity based on the profile given by Eq. (A.3) can be
formulated as

�mzm ¼
1
3
� 2G1

�n2Es

ðkaÞ2
1� coshðkaÞ � 1
ðkaÞ sinhðkaÞ

� �
: ðA:11Þ

The product f Re can be calculated from Eq. (41) with formula-
tion (A.11) for �mzm resulting in

f Re ¼ 24

1� 6G1
�n2Es

ðkaÞ2
1� coshðkaÞ�1

ðkaÞ sinhðkaÞ

h i ¼ 8
Q
¼ 24

la

l

� �
: ðA:12Þ

The energy equation was solved under the condition of
fully-developed flow both hydrodynamically and thermally.
Energy Equation Eq. (21) and the temperature distribution given
by Eq. (25) are valid; however, the coefficients in Eq. (25) assume
the following values:

J ¼ 1
3
� 4EsG1

�n2

ðkaÞ3 sinhðkaÞ
½ðkaÞ sinhðkaÞ � coshðkaÞ þ 1�

þ 2E2
s G2

1
�n4

ðkaÞ3sinh2ðkaÞ
½sinhð2kaÞ þ 2ka�; ðA:13Þ

Ah ¼
4EsG1

�n2

ðkaÞ3 sinhðkaÞ
; ðA:14Þ

Bh ¼
2EsG1

�n2

ðkaÞ3 sinhðkaÞ
; ðA:15Þ

Ch ¼
1

12
� 4EsG1

�n2

ðkaÞ4 sinhðkaÞ
½ka coshðkaÞ � 2 sinhðkaÞ�

þ E2
s G2

1
�n4

2ðkaÞ4sinh2ðkaÞ
½coshð2kaÞ þ 2ðkaÞ2�; ðA:16Þ

Dh ¼
5

24
� EsG1

�n2

ðkaÞ4
½ðkaÞ2 � 2�; ðA:17Þ

Eh ¼
�x4

12
� 4EsG1

�n2

ðkaÞ4 sinhðkaÞ
½ka�x coshðka�xÞ � 2 sinhðka�xÞ�

þ E2
s G2

1
�n4

2ðkaÞ4sinh2ðkaÞ
½coshð2ka�xÞ þ 2ðkaÞ2�x2�; ðA:20Þ

and

Fh ¼
�x2

24
ð6� �x2Þ � EsG1

�n2

ðkaÞ4
ðkaÞ2�x2 � 2

sinhðka�xÞ
sinhðkaÞ

� �
: ðA:21Þ
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Finally, Nusselt number was calculated from Eq. (48) with Gmh

and Hmh given by Eqs. (45) and (46), respectively, with formulation
(A.11) for �mzm and formulations (A.14) to (A.21) for Ah to Fh.
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